If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+320+32=0
We add all the numbers together, and all the variables
-16t^2+352=0
a = -16; b = 0; c = +352;
Δ = b2-4ac
Δ = 02-4·(-16)·352
Δ = 22528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22528}=\sqrt{1024*22}=\sqrt{1024}*\sqrt{22}=32\sqrt{22}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{22}}{2*-16}=\frac{0-32\sqrt{22}}{-32} =-\frac{32\sqrt{22}}{-32} =-\frac{\sqrt{22}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{22}}{2*-16}=\frac{0+32\sqrt{22}}{-32} =\frac{32\sqrt{22}}{-32} =\frac{\sqrt{22}}{-1} $
| 30x²–10=-1 | | 17n-60=190 | | 2x2–3x=0 | | -8x-7=28x-36x-42 | | 2^(2x-1)=5^(3x) | | 2a-2=20 | | 4a+2+7a-5=11a-3 | | x/10+4=8 | | x/7+3=24 | | 7=-6x+97.5 | | -9t^2+776=200 | | 12=14+7x-6 | | 2/5x+6=24 | | 7x+4=14+7x-6 | | 6(3x-2)=-30 | | 3+4n=2-n | | 3(2x+6)+7x=8+8(4x+6) | | -3x+12=14+7x-6 | | 5*2n=3n+6 | | -10x+15+12x+15=6 | | X/2-3=3/4+2x/8 | | 15x-21=12x+21 | | X=61.25-1.87y | | 3(13x+12)=7x+4-2x | | Y=(6x+4)(7x-8) | | x−15=4x−3 | | 10=20+2y | | 7w=1=8 | | 6x=-6+12 | | 6+n÷2=4 | | −2/7x=2 | | 3x+10+2=50 |